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A new pulsed-gradient spin-echo NMR protocol for assessing the local self-diffusion coefficient D0 of
water confined within living cells is proposed. Equations for the apparent mean-square displacement
<Z2> as a function of the effective diffusion time td and the duration of the displacement-encoding gra-
dient pulses d are derived. The standard method of estimating D0 – reducing td until the influence of col-
lisions between the water molecules and the plasma membrane can be neglected – often fails because of
the small size of typical cells. As demonstrated here, the decrease of the apparent <Z2> with increasing d
at constant td can be utilized to measure D0.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The dynamic behavior of water within the living cell is a contro-
versial subject. For example, recent neutron scattering studies on
the halophilic organism Haloarcula marismortui indicate that the
majority of the cell water has strongly reduced dynamics [1], while
NMR relaxation dispersion experiments on the same type of cells
show that most of the cell water reorient with a rate similar to bulk
water [2].

One of the most powerful methods to study molecular motion is
the pulsed-gradient spin-echo (PGSE) NMR technique [3–7]. For
molecules confined in a pore, e.g. a cell, the experimental results
depend on the local self-diffusion coefficient D0 and the pore size
and shape [8–11]. When trying to measure D0 using PGSE NMR,
the traditional approach has been to decrease the experimentally
defined observational time scale, the diffusion time, in order to re-
duce the influence of collisions with the pore walls [12,13]. The
analysis of PGSE NMR data is often based on the short gradient
pulse (SGP) approximation which states that the molecular dis-
placements taking place during the diffusion-encoding gradient
pulses are insignificant in comparison to both the pore size and
the displacements during the diffusion time [4,14,15]. A major
problem when trying to study diffusion in cell-size structures is
that the basic conditions for the SGP approximation no longer hold
[16,17], thus giving rise to systematic errors in the estimated val-
ues of D0 and the cell size [18].
ll rights reserved.
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Here we provide theoretical and experimental demonstrations
of how the deviations from the SGP approximation can be utilized
to determine D0 for cell water, even in the presence of excess extra-
cellular water. Proof-of-concept experiments are carried out on a
loosely packed sediment of yeast cells. Within cell biology and bio-
technology, yeast is one of the most intensely studied eukaryotic
model organisms [19,20].
2. Theory

In the PGSE NMR experiment, the nuclear spin magnetization is
dephased and rephased by two gradient pulses having the ampli-
tude g and the duration d. The time between the onset of the pulses
is denoted D. In the SGP-limit, the echo attenuation E(q,D) is the
Fourier transform of the average propagator P(Z,D) [4]:

Eðq;DÞ ¼
Z 1

�1
PðZ;DÞexpðiqZÞdZ; ð1Þ

where q is cgd, c is the magnetogyric ratio of the observed nucleus,
and Z is the displacement during the time D. The mean-square dis-
placement <Z2> can be determined from the initial, low-q, decay of
E(q,D):

Eðq;DÞ ¼ expð�q2hZ2i=2Þ ðas q! 0Þ ð2Þ

Eq. (2) is independent of the functional form of P(Z,D), but only
valid within the SGP approximation. If P(Z,D) is Gaussian, <Z2> can
still be evaluated from Eq. (2) if D is replaced with an effective dif-
fusion time td = D � d/3.
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The aim of this contribution is to show how deviations from Eq.
(2), when using experimental parameters outside the range of
validity of the SGP approximation, can be utilized to determine
D0 for cell water. With this goal in mind, let us define an apparent
mean-square displacement <Z(d,td)2> as

hZðd; tdÞ2i ¼ �
2

c2d2 lim
g ! 0

@ ln E
@g2 ð3Þ

in analogy with Eq. (2).
Neuman [21] presented a theory for calculating the echo atten-

uation resulting from a spin echo during a steady (e.g. not pulsed)
gradient for a confined fluid with bulk diffusion coefficient D0 un-
der the assumption that the phase distribution of the nuclear spins
remain Gaussian, the so-called Gaussian phase distribution (GPD)
approximation. This assumption is equivalent to the condition
g ? 0 as required by Eq. (3). Neuman’s approach was applied to
the PGSE experiment by Murday and Cotts [8], whose results were
later extended to planar and cylindrical geometries by Balinov
et al. [22] and van Gelderen et al. [23], respectively. The results
for all of these geometries can be summarized as

ln E ¼ �2c2g2
X1
m¼1

1
a2

mða2
mR2 þ 1� nDÞ

� 2a2
mD0d� 2þ 2LðdÞ þ 2LðDÞ � LðD� dÞ � LðDþ dÞ

ða2
mD0Þ2

: ð4Þ

In Eq. (4) LðtÞ ¼ e�a2
mD0t , nD is the number of dimensions (plane:

nD = 1, cylinder nD = 2, sphere: nD = 3), R denotes the half-spacing
between the planes or the radius of the cylinder or the sphere,
and am is the mth root of

JnD=2ðamRÞ � amRJ1þnD=2ðamRÞ ¼ 0; ð5Þ

where Jm is the mth order Bessel function of the first kind. Eq. (5) is
equivalent to cosðamRÞ ¼ 0 for the planar, J01ðamRÞ ¼ 0 for the cylin-
drical, and j01ðamRÞ ¼ 0 for the spherical case, where j1 is the spher-
ical Bessel function of the first kind.

The multiple propagator [24–26] and the step-wise gradient
pulse [27] approaches can be used to calculate E for the full range
of g, but for the purpose of this paper it is sufficient to focus on the
low-g region in which Eq. (4) is valid. Inserting Eq. (4) into Eq. (3)
yields

hZðd; tdÞ2i ¼ 4
X1
m¼1

1
a2

mða2
mR2þ1�nDÞ

�2a2
mD0d�2þ2LðdÞþ2Lðtdþ d=3Þ� Lðtd�2d=3Þ� Lðtdþ4d=3Þ

ða2
mD0dÞ2

:

ð6Þ
By making series expansions of the L(t) terms in Eq. (6), the follow-
ing limiting behaviors are obtained:

d <<
R2

D0
) hZðd; tdÞ2i ¼ 4

X1
m¼1

1� LðtdÞ
a2

mða2
mR2 þ 1� nDÞ

ð7Þ

td <<
R2

D0
) hZðd; tdÞ2i ¼ 2D0td ð8Þ

td >>
R2

D0
) hZðd; tdÞ2i

¼ 8
X1
m¼1

1
a2

mða2
mR2 þ 1� nDÞ

� a2
mD0d� 1þ LðdÞ
ða2

mD0dÞ2
ð9Þ

d >>
R2

D0
; td >>

R2

D0
) hZðd; tdÞ2i

¼ 8
X1
m¼1

1
a4

mR4ða2
mR2 þ 1� nDÞ

� R4

D0d
¼ C

R4

D0d
ð10Þ
d <<
R2

D0
; td >>

R2

D0
) hZðd; tdÞ2i ¼

2
2þ nD

R2: ð11Þ

Of the expressions above, Eqs. 7, 8, and 11 are well-known from
the literature [4]. The nD = 1 version of Eq. (9) was introduced by
Mitra and Halperin [28]. The long-d and -td limit in Eq. (10) is
the basis for the new approach of estimating D0. The geometry
dependent constant C in Eq. (10) equals 8/15 for the planar, 7/24
for the cylindrical, and 32/175 for the spherical case. Alternatively,
Eq. (10) can be obtained from the results of Grebenkov [6]. The sig-
nal can be expressed as

E ¼ exp½�ðcgRTÞ2h/2=2i�; ð12Þ

where </2/2> is related to the mean square phase of the nuclear
spins <u2> through

h/2=2i ¼ hu2i
2ðcgRTÞ2

; ð13Þ

and T is the time for echo formation. Comparing Eqs. (2) and (12)
shows that

hZ2i ¼ 2R2T2

d2 h/2=2i: ð14Þ

In the limit (D0T/R2) >> 1, Grebenkov derived [6]

h/2=2i ¼ 2f�1
ðd=TÞ
ðD0T=R2Þ

� 2f�2
1

ðD0T=R2Þ2
; ð15Þ

where f�1 and f�2 are constants depending on the pore geometry.
For sufficiently large (D0T/R2), the second term can be neglected.
Inserting the first term of Eq. (15) into Eq. (14) yields

hZ2i ¼ 4f�1
R4

D0d
; ð16Þ

which is identical to Eq. (10) with C = 4f�1. Values of f�1 are tabu-
lated in Ref. [6].

A plot of Eq. (6) and the regions of the (d,td)-parameter space in
which each approximation is valid are shown in Fig. 1. When
d << R2/D0 and td >> R2/D0, <Z(d,td)2> reaches a maximum value gi-
ven by Eq. (11). Decreasing td or increasing d both lead to a
decreasing value of <Z(d,td)2>.

The most obvious way of determining D0 is to perform the PGSE
experiment in the short-td limit in accordance with Eq. (8). Due to
instrumental limitations, such a direct approach is not feasible for
cells being only a few micrometers in size. In the long-d and long-td

limit, Eq. (10), the value of <Z(d,td)2> depends on the ratio R4/D0,
having the paradoxical result that faster diffusion leads to an
apparently smaller displacement! One very useful consequence
of Eq. (10) is that, even if it is impossible to decrease d and td to
reach the short-td limit as required by Eq. (8), one can determine
D0 by varying d at constant td. At short d, the PGSE experiment is
sensitive to R according to Eq. (11), while at longer d the outcome
of the measurement depends on the ratio R4/D0 consistent with Eq.
(10).

Here, we propose the following protocol for determining D0: Re-
cord E for a fixed value of td and a constant q-range for a series of
values of d centered at R2/D0. Since Eq. (4) is based on the assump-
tion of perfectly reflecting barriers, the value of td should be much
shorter than the characteristic time for molecular exchange across
the cell membrane. The values of q should be chosen to give some
decay of the intracellular signal while still being in the low-g/low-q
range as required by Eq. (3). Fortunately, these conditions are eas-
ily fulfilled on modern NMR spectrometers with diffusion or
microimaging capabilities. Similar protocols have previously been
used to estimate the intracellular fraction in cell suspensions [29]
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Fig. 1. (a) Reduced apparent root-mean-square displacement Zrms* = <Z(d,td)2>1/2/R
as a function of the reduced gradient pulse length d* = dD0/R2 and reduced effective
diffusion time td* = tdD0/R2. The lines are calculated with Eq. (6) for a sphere
(nD = 3). The mesh with thin lines indicates constant d* or td* while the thick line
shows d* = 1.5td* corresponding to a steady gradient in the PGSE experiment. (b)
Areas of validity for the limiting behaviors in Eqs. (7)–(11). The regions of the
(d*,td*)-space in which each approximation deviates less than 10% from the true
value is labeled with the corresponding equation number. The thin dashed line
indicates d* = 1.5td*.
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and the length scale of the director fluctuations in lyotropic lamel-
lar phases [30].
Fig. 2. Determination of the intracellular diffusion coefficient of water in yeast cells
at 25.0 �C using PGSE NMR with variable gradient pulse length d. (a) Water echo
attenuation E vs. the wave vector q2 for a set of d (8 values in a logarithmic sequence
between 0.5 and 20.0 ms). The arrow indicates the direction of increasing d. The
data was recorded for a constant effective diffusion time td = 20.0 ms and constant
echo time TE = 50.0 ms. For the shortest d, the gradient g was incremented in 15
logarithmically spaced steps from 1% to 100% of the maximum value 9.6 T/m. At
longer d, the gradient strength was reduced to keep the values of q = cgd constant.
The circles are experimental data and the lines are the result of a model fit of Eq.
(17) yielding intracellular diffusion coefficient D0 = 6.5 ± 0.2 � 10�10 m2s�1, extra-
cellular diffusion coefficient De = 1.268 ± 0.007 � 10�9 m2s�1, intracellular fraction
Pi = 0.407 ± 0.002, and cell radius R = 2.48 ± 0.01 lm (confidence interval 67% using
Monte Carlo error estimation). (b) Apparent root-mean-square displacement
Zrms = <Z(d,td)2>1/2 vs. d. The solid line is a plot of Eq. (6) using the values of D0

and R obtained from the global fit. The vertical bars indicate the results from a fit
where Zrms was varied without the constraint of obeying Eq. (6). The vertical
extension of the bars represent 80% confidence limits. The dashed lines are the
short- and long-d approximations calculated with Eqs. (11) and (10), respectively.
3. Experimental

Fresh baker’s yeast (Jästbolaget, Sweden) was dispersed in tap
water in a weight ratio of 2:1 (yeast:water). The resulting viscous
solution was transferred to a 5 mm O.D. disposable NMR tube and
was stored in room temperature for 3 days. Just before NMR exper-
iments the sample was centrifuged at 1500g for 2 min in order to
remove CO2 bubbles.

The NMR experiments were performed on a Bruker Avance-II
200 spectrometer operating at a 1H resonance frequency of
200.13 MHz. The magnet was equipped with a Bruker DIF-25 probe
capable of delivering z-gradients of approximately 9.6 T/m. The
self-diffusion of water was monitored by observing the 1H signal
in a standard PGSE experiment [3]. The water signal was recorded
for an array of values of d and q while keeping td and the echo time
TE fixed. With no signal averaging and 1 s repetition time, an entire
data set to determine D0 was acquired in about 3 min. Additional
specific experimental details are given in the caption of Fig. 2.
The experiments were performed at 5 temperatures linearly
spaced between 5 and 25 �C using 25 min of equilibration after a
temperature change. All data analysis was performed with Matlab.
4. Results and discussion

Experimental data obtained with the new protocol for a yeast
cell suspension is shown in Fig. 2(a). The plot of NMR signal vs. q
contains two clearly distinguishable components: (1) one compo-
nent decaying at low q, corresponding to large displacements,
being unaffected by the value of d and (2) one component decaying
at high q, corresponding to small displacements. Consistent with
Eq. (10), this latter component is decaying at progressively higher
q as d is increased. Two components with similar behavior have
previously been assigned to extra- and intracellular water, respec-
tively [29]. Just as in Ref. [29], the accuracy of the gradients was
checked by performing identical experiments on an aqueous poly-
mer solution designed to give rise to two diffusion components
with values similar to the ones observed in Fig. 2(a). For this refer-
ence sample, both components obey Gaussian diffusion statistics,
Eq. (8), and the signal decays are independent of d.

The measurements in Fig. 2(a) were analyzed by regressing



Fig. 3. Arrhenius plot of water self-diffusion coefficient D vs. inverse temperature
1/T. The data points show measured values for intra- and extracellular water, D0

and De, and literature data for bulk water Db [38]. The error bars indicate 67%
confidence interval. The solid lines show the results of fitting the Arrhenius
equation, yielding the activation energies Ea = 18.5 ± 0.4 kJ/mol for Db,
Ea = 19.9 ± 0.3 kJ/mol for De, and Ea = 23 ± 2 kJ/mol for D0 (67% confidence).
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Eðq; dÞ ¼ ð1� PiÞ expð�q2DetdÞ þ Pi expð�q2hZðd; tdÞ2i=2Þ ð17Þ

onto the experimental data using the Levenberg–Marquardt algo-
rithm [31]. In Eq. (17), Pi is the fraction of the intracellular compo-
nent and De is the diffusion coefficient of the extracellular
component. It should be noted that Eq. (17) is based on the assump-
tion of negligible molecular exchange between the intra- and extra-
cellular components on the time scale of td. The intracellular
lifetime of water is about 0.5 s [32], which is an order of magnitude
larger than the value of td used here.

The data was analyzed both with and without the constraint
that <Z(d,td)2> is given by Eq. (6) where R and D0 are unknown.
As shown in Fig. 2(b), there is an excellent agreement between
the two methods of analysis, indicating that Eq. (6) gives an accu-
rate description of the variation of <Z(d,td)2> with d. The plateau at
short d gives R according to Eq. (11) while the ratio R4/D0 is ex-
tracted from the decrease of <Z(d,td)2> at long d in line with Eq.
(10). In order to improve the accuracy of the fitted parameters, a
global constrained fit was performed. In this fit <Z(d,td)2> was given
by Eq. (6) which captures both the short- and long-d behaviors in
Eqs. (11) and (10), respectively. Thus, an equation with four adjust-
able parameters was fitted to the entire data set having two inde-
pendent variables and in total 120 data points. As reported in the
figure caption, the Monte Carlo method by Alper and Gelb [33]
was used for error estimation. Due to the factor R4/D0 in Eq. (10),
a small uncertainty of R results in a larger, although still accept-
able, uncertainty of D0.

A major problem when applying neutron scattering, NMR relax-
ation dispersion, and standard PGSE NMR to studies of cell water is
the presence of extracellular water. In the current case, the diffu-
sion of the extracellular component is only a factor of 2 faster than
the intracellular one. Even if the NMR equipment would allow for
experiments at the short td required for Eq. (8) to be valid, compo-
nents with such small differences in decay rate would be impossi-
ble to resolve from the resulting bi-modal signal decay. The signal
from the extracellular water can be suppressed by introducing a
paramagnetic relaxation agent preferentially located in the extra-
cellular space [12,34–36]. With the herein proposed protocol the
values of td and d are chosen to give at least an order of magnitude
difference in decay rate of the two components, thus making them
easy to resolve even without using relaxation agents.

At 25 �C the self-diffusion coefficient of bulk water is
Db = 2.30 � 10�9 m2s�1 [37,38]. The measured values De = 1.27 �
10�9 m2s�1 and D0 = 0.65 � 10�9 m2s�1 correspond to the ratios
De/Db = 0.55 and D0/Db = 0.29. The reduced diffusion in the extra-
cellular space can be attributed to the tortuosity of the pore space
formed between the closely packed cells [39,40] and the presence
of an extended polysaccharide cell wall outside the cell membrane
[41]. The cell wall constitutes as much as 30% of the yeast cell dry
weight [42], and can therefore be expected to have a significant
influence on the extracellular water.

The measured value of D0 agrees favorably with the extracellu-
lar relaxation-enhanced, short-td, PGSE experiments by Tanner
[12]. We construe the reduction in comparison to bulk water as a
result of the high concentration of macromolecules [43,44] and
the presence of intracellular barriers such as the nuclear envelope,
the endoplasmic reticulum, mitochondria, and vacuoles. It should
be emphasized that D0 as measured here corresponds to the diffu-
sion in an infinite medium having the same composition and
supramolecular organization as the intracellular space. The data
is consistent with a single spherical membrane (i.e. the cell mem-
brane) being the main barrier between the intra- and extracellular
compartments. Although there are several intracellular subcom-
partments, water exchange between these seem to take place on
a time scale shorter than the one given by the PGSE experiment
(�1 ms). Since water reorientation [2,45] and molecular scale
translational diffusion [46] is quite similar for cell- and bulk water,
the values of D0/Db can be interpreted as an effective tortuosity of
the crowded cell interior.

The temperature dependence of Db, De, and D0 in the interval +5
to +25 �C and the corresponding Arrhenius analysis is shown in
Fig. 3. Although both De and D0 are reduced in comparison to Db,
identical activation energies Ea would be expected if the reduction
was purely the result of geometrical obstruction effects. The ob-
tained values of Ea are indeed almost the same, indicating similar
diffusion mechanisms on the molecular scale. The slightly higher
value of Ea for intracellular diffusion could be interpreted in terms
of stronger interactions between the water and intracellular sol-
utes. Such an interpretation should be taken with caution due to
the problems associated with an Arrhenius analysis applied to a
living system that quite possibly responds to a change in
temperature.

5. Conclusions

A PGSE NMR protocol with varying gradient pulse length d can
be used to estimate the local self-diffusion coefficient of molecules
confined in micrometer-size objects in general, and biological cells
in particular, using only a few minutes of instrument time. For cell
water, the results could be used as a probe of the intracellular orga-
nization. The protocol is easy to implement on any modern NMR
spectrometer, or even bench-top NMR system, with diffusion
accessories.
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